Emerging roles of macrosatellite repeats in genome organization and disease development
نویسندگان
چکیده
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.
منابع مشابه
The macrosatellite DXZ4 mediates CTCF-dependent long-range intrachromosomal interactions on the human inactive X chromosome.
The human X-linked macrosatellite DXZ4 is a large tandem repeat located at Xq23 that is packaged into heterochromatin on the male X chromosome and female active X chromosome and, in response to X chromosome, inactivation is organized into euchromatin bound by the insulator protein CCCTC-binding factor (CTCF) on the inactive X chromosome (Xi). The purpose served by this unusual epigenetic regula...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملThe D4Z4 Macrosatellite Repeat Acts as a CTCF and A-Type Lamins-Dependent Insulator in Facio-Scapulo-Humeral Dystrophy
Both genetic and epigenetic alterations contribute to Facio-Scapulo-Humeral Dystrophy (FSHD), which is linked to the shortening of the array of D4Z4 repeats at the 4q35 locus. The consequence of this rearrangement remains enigmatic, but deletion of this 3.3-kb macrosatellite element might affect the expression of the FSHD-associated gene(s) through position effect mechanisms. We investigated th...
متن کاملمروری بر بیماری سندرم حاد تنفسی (SARS)
Severe Acute Respirators;apos Syndrome (SARS), an emerging infectious disease first reported from the Chinese province of Guangdong, has already caused one worldwide outbreak. The syndrome spread across the globe by travelers. The etiologic agent was unknown at the beginning, but because of the rapid spread of the disease, an infectious agent with high transmission potency was suspected. Later ...
متن کاملFilling in the Gap of Human Chromosome 4: Single Molecule Real Time Sequencing of Macrosatellite Repeats in the Facioscapulohumeral Muscular Dystrophy Locus.
A majority of facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of macrosatellite repeats called D4Z4 that are located in the subtelomeric region of human chromosome 4q35. Sequencing the FSHD locus has been technically challenging due to its long size and nearly identical nature of repeat elements. Here we report sequencing and partial assembly of a BAC clone carrying an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017